

3D TCAD Simulation of Photonic Crystal Lasers

- Directly modulated ultra-compact light source for CMOS-integrated photonic networks.
- Based on nano-cavity using high-Q photonic crystal.
- Ultra-low threshold and ultra-low energy consumption.
- Easy to integrate thousands of PhCLD into a single chip.

Optically-pumped PhCLD demonstrated

Figure 1 | Structure of the photonic-crystal nanocavity laser. a, Structure of previously reported photonic-crystal lasers. The photonic-crystal cavity is formed in a thin membrane consisting of a gain material (conventionally $\operatorname{lnGaAsP}$) suspended in air to achieve strong light confinement. \mathbf{b}, Wavelength-sized BH photonic-crystal laser. The active region is embedded in an InP layer. \mathbf{c}, Field profile of BH photonic-crystal nanocavity calculated by FDTD. The calculated modal volume and cavity Q are $\sim 0.2 \mu \mathrm{~m}^{3}$ and $\sim 1.7 \times 10^{6}$, respectively.
Ref: "High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted," Shinji Matsuo, et.al., http://www.nature.com/doifinder/10.1038/nphoton.2010.177

- Full device: PhC regarded as $2^{\text {nd }}$ order grating in 3 directions. Grating parameters extracted from effective index models. Pro: most accurate; Con: time costly due to structural complexity.
- LD only: PhC regarded as effective mirror with mirror reflectivity from FDTD. Pro: efficient. Con: lost of electrical/optical coupling.
- LD + PhC portion: part of PhC holes near LD cavity taken into account. Reflectivity from FDTD used for other parts. Recommended here.

- All methods rely on FDTD for optical mode profiles within and around LD cavity.

Mesh generation starting from GDSII layout.

Structures constructed from CSuprem

Special cavity with propagation along y axis.

Photonic crystal air holes are conveniently generated on xy-plane using MaskEditor of CSuprem. GDSII format accepted.

Current injection

Electrodes assumed on top/bottom of PhC

Total Curr. Mag (A)

752719
6000000
500000
400000
300000
200000
100000

Lasing characteristics (ultra low threshold)

Spectrum of emission (nice and single).

Optical mode profile (FDTD does it all)

FDTD data imported into PICS3D simulation

Summary

- Most advanced integration of FDTD and PICS3D electrical-optical simulation for PhCLD application.
- 3D TCAD tools from Crosslight can be used to design and optimize electrically pumped PhCLD.
- User friendly and practical graphic user interface (GUI) covers all the way from original GDSII layout to final lasing characteristics.

Creators of Award Winning Software

CROSLIGHT Software Inc.

