Analysis of Resonant-Cavity Light-Emitting Diodes

Copyright 2006 Crosslight Software Inc. www.crosslight.com

Contents

- About RCLED.
- Crosslight's model.
- Example of an InGaAs/AlGaAs RCLED with experimental verification.
- Example of a VCSEL-like RCLED of GaAs/AlGaAs MQW.
- RCLED with detuned DBR.
- RCLED with long cavity.
- Conclusions.

About RCLED

- RCLED takes advantage of microcavity effects to enhance spontaneous emission.
- Narrower spectrum linewidth.
- Superior directionality of emission with better LED-fiber coupling.
- Potential as light source for recent plastic optical fiber (POF)-based local area networks.

Crosslight RCLED model

- Self-consistent calculation of material spontaneous emission rate based on rigorous quantum well/dot spectrum theories coupled with 2/3D simulation of current injection from the Crosslight APSYS drift-diffusion solver.
- Coupling of spontaneous emission with microcavity modes based on theory of C. H. Henry (1986) [1].
- Henry's theory has been extended from waveguide to RCLED by proper accounting of mode densities in a quasi-2D/3D emission situation.
- Photon recycling effects taken into account by accurate determination of photon power density inside the RCLED and self-consistent model of material gain/loss of the quantum wells/dots.

[1] C. H. Henry, "Theory of spontaneous emission noise

in open resonators and its application to lasers and optical amplifiers,"

J. Lightwave Technol., vol. LT-4, pp. 288--297, March 1986.

Contents

- About RCLED.
- Crosslight's model.
- Example of an InGaAs/AlGaAs RCLED with experimental verification.
- Example of a VCSEL-like RCLED of GaAs/AlGaAs MQW.
- RCLED with detuned DBR.
- RCLED with long cavity.
- Conclusions.

Structure

Software Inc

Simulation Mesh

algaas(x=0)

2/3D Drift-Diffusion Model

True Physical Simulation in 3D

True 3D simulation of band structure physics including MQW strain effects. Current flow and self-heating may be included self-consistently in 3D.

Standing Wave and Carrier Generation

11.44 11.46 11.48

Z (Micron)

11.5

0 20

40

R (Micron)

60

80

100

11.3 11.32 11.34 11.36 11.38

transition models.

Standing Wave and Index

Remark: The reflection phase of the Ag. Mirror is adjusted so that antinode of standing wave aligns with the MQW region.

Photon Recycling and IQE

- High mirror reflectivity
 higher photon density in cavity under resonant condition.
- Re-absorbed photons
 higher photo carrier densities (selfphoto-pumping).
- Higher carrier concentration → more photon emission by spontaneous emission (enhanced by microcavity resonance).
- Actual spontaneous emission rate substantially higher than current injection rate.
- IQE calculation = spontaneous emission rate subtracting photon absorption rate, dividing current injection rate.

Improvement in Spectrum Linewidth

Angle Dependence in EL Spectrum

Bottom Em. Spectrum (Watt/eV)

Remark: For well tuned DBR /cavity-length and high Q cavity, only a single emission peak at normal direction is significant.

0.01 0.009 0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

Contents

- About RCLED.
- Crosslight's model.
- Example of an InGaAs/AlGaAs RCLED with experimental verification.
- Example of a VCSEL-like RCLED of GaAs/AlGaAs MQW.
- RCLED with detuned DBR.
- RCLED with long cavity.
- Conclusions.

Structure of AlGaAs RCLED

A VCSEL-like structure with fewer layer pairs in top DBR to help power extraction. Ion implantation is used to form current confinement.

CROSLIGHT Software Inc

2/3 Dim Drift-Diffusion Model

gain to help amplify the optical waves there.

CROSLIGHT Software Inc

Current Crowding Effects

Em Rate (1/m/B/s)

Standing Wave Alignment

Angular dependence of EL spectrum

CROSLIGHT Software Inc

Contents

- About RCLED.
- Crosslight's model.
- Example of an InGaAs/AlGaAs RCLED with experimental verification.
- Example of a VCSEL-like RCLED of GaAs/AlGaAs MQW.
- RCLED with detuned DBR.
- RCLED with long cavity.
- Conclusions.

Detuning DBR/Cavity

- There may be applications of RCLED to control the direction of major resonant peak at an oblique angle.
- Take similar VCSEL-like structure with longer cavity and slightly reduced DBR periods.
- Detuning at normal direction.

Engineering the Emission Angle

Top Em. Spectrum (Watt/eV)

Remark: Major emission at an oblique angle means ring-like emission pattern in real space.

Contents

- About RCLED.
- Crosslight's model.
- Example of an InGaAs/AlGaAs RCLED with experimental verification.
- Example of a VCSEL-like RCLED of GaAs/AlGaAs MQW.
- RCLED with detuned DBR.
- RCLED with long cavity.
- Conclusions.

InGaN LED Structure

5 period TiO₂/SiO₂ DBR

Structure taken from: Horng et. al. IEEE Photonic Tech. Lett., Vol. 18, p. 457, 2006

Software Inc

Standing Wave at Normal Direction

CROSLIGHT Software Inc

Multiple Resonance Peaks as Compared with Experiment

Software Inc

Conclusions

- A comprehensive physical model of resonant cavity has been incorporated into Crosslight's APSYS/LED modules.
- Based on rigorous theory describing interaction of spontaneous emission spectrum with microcavity modes.
- Resonant effects in spatial, spectral and angular dimensions have been obtained in reasonable agreement with experiments.
- Self-consistent integration with the main APSYS simulator enables all-in-one analysis and design approach.

