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About RCLED About RCLED About RCLED 

n RCLED takes advantage of 
microcavity effects to enhance 
spontaneous emission.

n Narrower spectrum linewidth.
n Superior directionality of emission 

with better LED-fiber coupling.
n Potential as light source for recent 

plastic optical fiber (POF)-based local 
area networks.
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Crosslight RCLED modelCrosslight Crosslight RCLED modelRCLED model
n Self-consistent calculation of material spontaneous 

emission rate based on rigorous quantum well/dot 
spectrum theories coupled with 2/3D simulation of current 
injection from the Crosslight APSYS drift-diffusion solver.

n Coupling of spontaneous emission with microcavity modes 
based on theory of C. H. Henry (1986) [1].

n Henry’s theory has been extended from waveguide to 
RCLED by proper accounting of mode densities in a quasi-
2D/3D emission situation.

n Photon recycling effects taken into account by accurate 
determination of photon power density inside the RCLED 
and self-consistent model of material gain/loss of the 
quantum wells/dots.
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n Henry’s theory has been extended from waveguide to 
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2D/3D emission situation.

n Photon recycling effects taken into account by accurate 
determination of photon power density inside the RCLED 
and self-consistent model of material gain/loss of the 
quantum wells/dots.

[1] C. H. Henry, "Theory of spontaneous emission noise 

in open resonators and its application to lasers and optical amplifiers," 

J. Lightwave Technol., vol. LT-4, pp. 288--297, March 1986.
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Structure Structure Structure 

Based on Schubert et. al, 
J. Lightwave Technol., vol. 
14, p. 1721
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Simulation MeshSimulation MeshSimulation Mesh

MQW and 
Optical 
Region
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2/3D Drift-Diffusion Model2/3D Drift2/3D Drift--Diffusion ModelDiffusion Model

3D Potential 
distribution

Distribution of y-
component of 
electronic current

DBR Region

MQW Region
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True Physical Simulation in 3DTrue Physical Simulation in 3DTrue Physical Simulation in 3D

Electron IMREF

Hole IMREF

Valence band/LH/HH

Conduction band

True 3D simulation of band structure physics including MQW 
strain effects. Current flow and self-heating may be included 
self-consistently in 3D.
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Standing Wave and Carrier GenerationStanding Wave and Carrier GenerationStanding Wave and Carrier Generation

Power density relative to 
spontaneous emission 
power in z-direction

Carrier generation rate due to 
high optical power within the 
LED cavity.  Absorption at 
MQW calculated self-
consistently using interband 
transition models.
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Standing Wave and IndexStanding Wave and IndexStanding Wave and Index

Remark:  The reflection phase of the Ag. Mirror is adjusted so 
that antinode of standing wave aligns with the MQW region.

Re-scaled power density

Refractive 
index

MQW
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Photon Recycling and IQEPhoton Recycling and IQEPhoton Recycling and IQE

n High mirror reflectivity è higher 
photon density in cavity under 
resonant condition.

n Re-absorbed photons è higher 
photo carrier densities (self-
photo-pumping). 

n Higher carrier concentration è
more photon emission by 
spontaneous emission (enhanced 
by microcavity resonance).

n Actual spontaneous emission rate 
substantially higher than current 
injection rate.

n IQE calculation =  spontaneous 
emission rate subtracting photon 
absorption rate, dividing current 
injection rate.

n High mirror reflectivity è higher 
photon density in cavity under 
resonant condition.

n Re-absorbed photons è higher 
photo carrier densities (self-
photo-pumping). 

n Higher carrier concentration è
more photon emission by 
spontaneous emission (enhanced 
by microcavity resonance).

n Actual spontaneous emission rate 
substantially higher than current 
injection rate.

n IQE calculation =  spontaneous 
emission rate subtracting photon 
absorption rate, dividing current 
injection rate.

Spont.
Em.

Re-
Absorp.

Self-pumping
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Improvement in Spectrum LinewidthImprovement in Spectrum Improvement in Spectrum LinewidthLinewidth

Experimental
Data taken from 
Schubert et. al, 
J. Lightwave 
Technol., vol. 14, 
p. 1721

MQW 
material 
emission 
without RC 
effects

4 curves 
from 2.5 
to 10 mA 
injection

Simulated EL 
emission 
from bottom 
facet of 
RCLED.
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Angle Dependence in EL SpectrumAngle Dependence in EL SpectrumAngle Dependence in EL Spectrum

Remark: For well tuned DBR 
/cavity-length and high Q 
cavity, only a single 
emission peak at normal 
direction is significant.

More details 
near low 
intensity region



15

Contents Contents Contents 

n About RCLED.
n Crosslight’s model.
n Example of an InGaAs/AlGaAs RCLED 

with experimental verification.
n Example of a VCSEL-like RCLED of 

GaAs/AlGaAs MQW.
n RCLED with detuned DBR.
n RCLED with long cavity.
n Conclusions.

n About RCLED.
n Crosslight’s model.
n Example of an InGaAs/AlGaAs RCLED 

with experimental verification.
n Example of a VCSEL-like RCLED of 

GaAs/AlGaAs MQW.
n RCLED with detuned DBR.
n RCLED with long cavity.
n Conclusions.



16
Structure of AlGaAs RCLEDStructure of Structure of AlGaAs AlGaAs RCLEDRCLED

A VCSEL-like structure with fewer  layer pairs in top DBR to help power 
extraction.  Ion implantation is used to form current confinement.

MQW

Implanted 
current 
confinement 
region

Top DBR

Bottom DBR
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2/3 Dim Drift-Diffusion Model2/3 Dim Drift2/3 Dim Drift--Diffusion ModelDiffusion Model

Y-component of electron current distribution in RCLED. Please 
note the strong (blue) current crowding area which causes optical 
gain to help amplify the optical waves there.
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RCLED PerformanceRCLED PerformanceRCLED Performance

(a) Internal efficiency of near unity.  

(b) Extraction efficiency from top 
facet.

(c) Total EL power versus injection 
current.

(a) (b)

(c)
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Current Crowding EffectsCurrent Crowding EffectsCurrent Crowding Effects

MQW spontaneous emission 
distribution under top aperture.  
Lateral distribution is due to 
current crowding.

Standing wave shows strong lateral 
variation due to gain/’spontaneous 
emission rate distribution. 
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Standing Wave AlignmentStanding Wave AlignmentStanding Wave Alignment

Remark: Effective cavity length near the MQW should be (n+1/2) 
wavelength to ensure antinode of standing wave aligns with MQW.

Scaled 
power

Index profile MQW
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Angular dependence of EL spectrumAngular dependence of EL spectrumAngular dependence of EL spectrum

Detailed view of lower 
power regime of the above
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Detuning DBR/Cavity Detuning DBR/Cavity Detuning DBR/Cavity 

n There may be applications of RCLED to control 
the direction of major resonant peak at an 
oblique angle.

n Take similar VCSEL-like structure with longer 
cavity and slightly reduced DBR periods.

n Detuning at normal direction.

n There may be applications of RCLED to control 
the direction of major resonant peak at an 
oblique angle.

n Take similar VCSEL-like structure with longer 
cavity and slightly reduced DBR periods.

n Detuning at normal direction.

Alignment of 
wave at 
oblique 
maximum 
power 
direction with 
refractive 
index profile.
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Engineering the Emission AngleEngineering the Emission AngleEngineering the Emission Angle

Remark: Major emission at an oblique angle means ring-like 
emission pattern in real space.
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InGaN LED Structure InGaNInGaN LED Structure LED Structure 

Structure taken from: Horng et. al.  IEEE Photonic Tech. Lett., 
Vol. 18, p. 457, 2006 

Simulated electron 
current flow pattern.
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Standing Wave at Normal DirectionStanding Wave at Normal DirectionStanding Wave at Normal Direction

DBR

MQW

Index profile

Power density
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Multiple Resonance Peaks as Compared with ExperimentMultiple Resonance Peaks as Compared with ExperimentMultiple Resonance Peaks as Compared with Experiment
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n A comprehensive physical model of resonant 
cavity has been incorporated into 
Crosslight’s APSYS/LED modules.

n Based on rigorous theory describing 
interaction of spontaneous emission 
spectrum with microcavity modes. 

n Resonant effects in spatial, spectral and 
angular dimensions have been obtained in 
reasonable agreement with experiments.

n Self-consistent integration with the main 
APSYS simulator enables all-in-one analysis 
and design approach.
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